यदि दीर्घवत्त $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ तथा वत्त $x^{2}+y^{2}=4 b$, $b >4$ के प्रतिच्छेदन बिन्दु वक्र $y ^{2}=3 x ^{2}$ पर स्थित हैं, तो $b$ बराबर है
$12$
$5$
$6$
$10$
दीर्घवृत्त ${x^2} + 2{y^2} = 2$ पर किसी बाह्य बिन्दु से खींची गयी स्पर्श रेखाओं द्वारा निर्देशांक अक्षों से काटे गये अन्त:खण्ड के मध्य बिन्दु का बिन्दुपथ है
यदि दीर्घवत्त $\frac{ x ^{2}}{ b ^{2}}+\frac{ y ^{2}}{4 a ^{2}}=1$ की एक स्पर्श रेखा तथा निर्देशांक अक्षों द्वारा बने त्रिभुज का न्यूनतम क्षेत्रफल $kab$ है, तो $k$ बराबर है ........ |
दीर्घवृत्त $x ^2+2 y ^2=4$ पर रिथत बिन्दुओं तथा बिन्दु $(4,3)$ को मिलाने वाले रेखाखण्ड के मध्य बिन्दु का बिन्दुपथ दीर्घवृत्त है जिसकी उत्केन्द्रता है :
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है
माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :